14,202 research outputs found

    Lubricant selection for gear designers

    Get PDF
    Guide for gear designers, consisting of theory, calculations, charts, curves and references, explains lubrication requirements for gears to insure maximum performance. Mechanical and service variables are considered in order to obtain optimum gear performance under severe operating conditions

    Surface trapping and leakage of low-frequency g-modes in rotating early-type stars -- I. Qualitative analysis

    Full text link
    A qualitative study of the surface trapping of low-frequency non-radial g-modes in rotating early-type stars is undertaken within the Cowling, adiabatic and traditional approximations. It is demonstrated that, at frequencies below a cut-off, waves cannot be fully trapped within the star, and will leak through the surface. Expressions for the cut-off frequency are derived in both the non-rotating and rotating cases; it is found from these expressions that the cut-off frequency increases with the rotation rate for all but prograde sectoral modes. The results are of possible relevance to the 53 Per and SPB classes of variable star, which exhibit pulsation frequencies of the same order of magnitude as the cut-off frequencies found for the stellar model. It is suggested that observations either of an upper limit on variability periods (corresponding to the cut-off), or of line-profile variations due to leaking modes, may permit asteroseismological studies of the outer layers of these systems.Comment: 8 pages, 2 figures, to be published in MNRA

    Lubrication and cooling for high speed gears

    Get PDF
    The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions

    Surface fatigue life and failure characteristics of EX-53, CBS 1000M, and AISI 9310 gear materials

    Get PDF
    Spur gear endurance tests and rolling-element surface fatigue tests are conducted to investigate EX-53 and CBS 1000M steels for use as advanced application gear materials, to determine their endurance characteristics, and to compare the results with the standard AISI 9310 gear material. The gear pitch diameter is 8.89 cm (3.50 in). Gear test conditions are an oil inlet temperature of 320 K (116 F), an oil outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. Bench-type rolling-element fatigue tests are conducted at ambient temperature with a bar specimen speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa (700 ksi). The EX-53 test gears have a surface fatigue life of twice that of the AISI 9310 spur gears. The CBS 1000M test gears have a surface fatigue life of more than twice that of the AISI 9310 spur gears. However, the CBS 1000M gears experience a 30-percent tooth fracture failure which limits its use as a gear material. The rolling-contact fatigue lines of RC bar specimens of EX-53 and ASISI 9310 are approximately equal. However, the CBS 1000M RC specimens have a surface fatigue life of about 50 percent that of the AISI 9310

    Elastohydrodynamic principles applied to the design of helicopter components

    Get PDF
    Elastohydrodynamic principles affecting the lubrication of transmission components are presented and discussed. Surface temperature of the transmission bearings and gears affect elastohydrodynamic film thickness. Traction forces and sliding as well as the inlet temperature determine surface temperatures. High contact ratio gears cause increased sliding and may run at higher surface temperatures. Component life is a function of the ratio of elastohydrodynamic film thickness to composite surface roughness. Lubricant starvation reduces elastrohydrodynamic film thickness and increases surface temperatures. Methods are presented which allow for the application of elastohydrodynamic principles to transmission design in order to increase system life and reliability

    Excitation of g modes in Wolf-Rayet stars by a deep opacity bump

    Full text link
    We examine the stability of l=1 and l=2 g modes in a pair of nitrogen-rich Wolf-Rayet stellar models characterized by differing hydrogen abundances. We find that modes with intermediate radial orders are destabilized by a kappa mechanism operating on an opacity bump at an envelope temperature log T ~ 6.25. This `deep opacity bump' is due primarily to L-shell bound-free transitions of iron. Periods of the unstable modes span ~ 11-21 hr in the model containing some hydrogen, and ~ 3-12 hr in the hydrogen-depleted model. Based on the latter finding, we suggest that self-excited g modes may be the source of the 9.8 hr-periodic variation of WR 123 recently reported by Lefevre et al. (2005).Comment: 5 pages, 3 figures, accepted by MNRAS letter

    Study of lubricant jet flow phenomena in spur gears: Out of mesh condition

    Get PDF
    The penetration depth onto the tooth flank of a jet of oil at different velocities pointed at the pitch line on the outgoing side of mesh was determined. The analysis determines the impingement depth for both the gear and the pinion. It includes the cases for speed increasers and decreasers as well as for one to one gear ratio. In some cases the jet will strike the loaded side of the teeth, and in others it will strike the unloaded side of the teeth. In nearly all cases the top land will be cooled regardless of the penetration depth, and postimpingement oil spray will usually provide adequate amounts of oil for lubrication but is marginal or inadequate for cooling

    Centrifugal Breakout of Magnetically Confined Line-Driven Stellar Winds

    Full text link
    We present 2D MHD simulations of the radiatively driven outflow from a rotating hot star with a dipole magnetic field aligned with the star's rotation axis. We focus primarily on a model with moderately rapid rotation (half the critical value), and also a large magnetic confinement parameter, η∗≡B∗2R∗2/M˙V∞=600\eta_{\ast} \equiv B_{\ast}^2 R_{\ast}^{2} / \dot{M} V_{\infty} = 600. The magnetic field channels and torques the wind outflow into an equatorial, rigidly rotating disk extending from near the Kepler corotation radius outwards. Even with fine-tuning at lower magnetic confinement, none of the MHD models produce a stable Keplerian disk. Instead, material below the Kepler radius falls back on to the stellar surface, while the strong centrifugal force on material beyond the corotation escape radius stretches the magnetic loops outwards, leading to episodic breakout of mass when the field reconnects. The associated dissipation of magnetic energy heats material to temperatures of nearly 10810^{8}K, high enough to emit hard (several keV) X-rays. Such \emph{centrifugal mass ejection} represents a novel mechanism for driving magnetic reconnection, and seems a very promising basis for modeling X-ray flares recently observed in rotating magnetic Bp stars like σ\sigma Ori E.Comment: 5 pages, 3 figures, accepted by ApJ
    • …
    corecore